The Amazing Graph of $y=(-1)^{\wedge} x$

I looked at the equation $\mathbf{y}=(-\mathbf{1})^{\mathbf{x}}$ and found some fascinating results!
$(-1)^{0}=1$,
$(-1)^{1 / 2}=i$,
$(-1)^{1}=-1$,
$(-1)^{1 / 2}=-i$
$(-1)^{2}=1$,
$(-1)^{2 / 2}=i$,
$(-1)^{3}=-1$,
$(-1)^{31 / 2}=-i$
$(-1)^{4}=1$,
$(-1)^{4 / 2}=i$,
$(-1)^{5}=-1$,
$(-1)^{51 / 2}=-i$

But the value of $\mathbf{y}=(\mathbf{1})^{\mathbf{x}}$ does not just jump from $\mathbf{1}$ to \boldsymbol{i} to $-\mathbf{1}$ to $-\boldsymbol{i}$ It takes all the values in between!
$(-1)^{0}=1$ and $(-1)^{1 / 2}=$ ibut $(-1)^{\frac{1}{3}}=\frac{1}{2}+i \frac{\sqrt{3}}{2}$ and $(-1)^{\frac{1}{4}}=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$
and $(-1)^{\frac{3}{4}}=-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$
The graph of $\mathbf{y}=(-\mathbf{1})^{\mathbf{x}}$ in order to accommodate real and imaginary \mathbf{y} values needs to have an ordinary \mathbf{x} axis for real numbers only but a complex y plane.

This next graph just has the REAL y values marked as PALE BLUE points.

This next graph has the completely imaginary points marked in YELLOW

This is an END view of the above graph:

As you can see the values do not just jump between $\mathbf{1}$ to \boldsymbol{i} to $\mathbf{- 1}$ to $\boldsymbol{- i}$. It is continuous!

The result is this beautiful HELIX.

Here is just the plain graph:

You can see more on this type of concept on my website.
www.phantomgraphs.weebly.com

